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COMPARATIVE ANALYSIS OF VARIOUS METHODS OF EVALUATING
THE PARAMETERS IN THE PROBLEM QOF V.G. KURT

L.S. Gurin, N.P. Ivanova, V.S. Mokrov and K.A. Tsoy

Section 1. Formulation of Problem

Fluxes+(of pulses, particles) with different intensitles are
observed. Each flux 1s isoclated by an appropriate filter. With-
out loss of generality we will assume that the number of filters
is four. It is assumed that the fluxes represent Poisson pro-
cesses (in particular, the simplest 'Bolsson processes) wlth
parameters Ay,...,A4, which must be estimated. The filters are
connected sequentially for equal time intervals to (tg = 12 sec).
The number of points (pulses, particles) is counted by one
counter-adder, which accumulates the pulses from each connected
filter and transmits the instants at which the number of points

1s a multiple of some number n (in practice, n = 8; below, we will

consider only thils case). The time interval 4t in'which all
filters were connected will be called a c¢ycle. Thus, the result
of the measurements represents a sequence of time instants

tj (] = 1,...,N) in the interval T conslsting of a specific number

of cyecles T = imt.
The following problems must be solved:

a. The unknown parameters A; (i = 1,2,3,4) must be
estimated.

b. The parameters must be determined as a function of
time, provided such a functional relationship exists.

¥ Numbers in the margln indicate pagination in the foreign text.
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¢. The hypothesis that the fluxes represent a Poisson
process must be tested.

A1l problems are interrelated. For example, to solve prob-
lem b, problem a must be solved using theminimum number of cycles
(1f possible, one cycle). Henceforth, m, will denote the number /4
of cycles on the basis of which one set of parameters is determined
and the corresponding time (base time) will be denoted by Tq-

This article compares several methods for the estimation of
the parameters (and thus also the solutlon of the first and,
partially, the second formulated problems). The comparison is
based both on theoretical concepts and also on the results ob-
tained from applying these methods to trial fluxes obtained using
Monte Carlo methods. Since for the trial fluxes the parameters
are specified in advance, foroa.sufficilently large number of
realizstions we obtain the varilances of the estimators given by
the different methods. The analysls presented in the article can
be used to select the most suitable method for the treatment of the

results"of actual physical measurements.

Seetion 2. The Case of Sufficiently Dense Fluxes

. For gufficiently dense fluxes, two or more time instantsn
will 1le in some 1ntervals t, . 1In this case, the Xj can be esti-

mated as follows::
When the instants
1562500+ stky (ky > 2)
lie in the interval t,,
Bi{K-1)

CAL =T (2.1)

2%



When this holds for every A; in one cycle 4#t,, this cycle
will be the base time. Otherwise, the base time Ty = 4mty, can
be selected so that this event will occur at least once for every
Ai. .

Therefore, it is useful to change the form of formula (2.1).
Henceforth, k; - 1 will denote the total number of "steps," 1.e.
time intervals At4,, between two successive time instants, In-
cluded in the time interval t, during which the i-th filter is
active, counted in the base interval T,. Then formula (2.1) can
be rewritten in the form

A = 2D

Z‘A.ti.v (2A2)

vat

Here r(andsthroughout theoarticle), the subscript i denotes
the number of the flux. '

Let us estimate the accuracy of this methed, whilch we will
henceforth call the first approximation method.

It 1s known that the time between two successive points in a
flux representing a Polisson process with parameter Ai (henceforth
we will assume that A; does not change in the base interval Tg)
has an exponential distribution with expected value 1/x4 and
variance l/A%. Since the individual time intervals are statis-
tically independent, for.ithe sume of the intervals we have
5y = 8(ki - 1), which we denote by\&gi {(to emphasize that it is
a random variable).

/5

[Throughout the article, M denotes expected value (E) and D denotes

variance (Var).]



According to A.M. Lyapunov's central limit theorem, for
sufficiently‘largeéi,gsi will be a normally distributed random
variable, Therefore, we have (wilth probability 0.95) the approxi-

mate inequality

L SV SRy v e S
f; At“, ---———Ai f< 1,9 ‘/-—,-_AL ;

—

or, after substitutlion and rearrangement,

.S(Ki") :4 1,96 qs-‘;"’) .

A~ T - :
‘I ZAtiv o ZI at, (2.4)
vel 2T S
Denoting as usual the estimator of A3 by ii: we obtain from ég

(2.4) for the relative error with probability 0.95

[ 196 |
Y TUN 1 (2.5)

X, _E'E
A

Thus, for a 10% error we must take ki = 49. We note thatifor
this valueof ki, 1t is legitimate to apply the A.M. Lyapunov theorem

(central limit theorem).

Let us define the concept of a "sufficiently dense" flux more
accurately. Suppose the base includes mg cycles. Then the
total operating time of the 1-th filter 1s myt,. When we have
ky -1 "steps," the ratio

=
"

M
r%+-
<

s
]
I
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=
a

(2.6)

characterlizes the density of the flux A; relative to the character-
istic time t5. Clearly 0 < &y < 1 and X4 + « as &; - 1. Henceforth



we will call &; the density coefficient. For MRy > 0.5, we can
consider the flux to ke sufficiently dense (since L; is a random
variable, and theoretically 1t is more convenlent to consider its

expected value MLy).

Determination of Time Varying Flux. Suppose we have

‘\ )t-‘.“’)lgft). (2-7)

Let us consider two nelghboring base intervals, The distance
between their centers is T,. To derive the relation (2.7),

T. must be suffieciently small, so that the®function (2.7) is llnear

o
on the interval Ty (otherwise the estimators presented above will

be blased). Then approximately

| {(2.8)

On the other hand, we have seen that for the given T, the
error with which X;(t) is determined can be, with probability
0.95,

1.96/v8(ky - 1).

Using the density coefficlent £;, the last expression can
be written in the form

‘1,96 496 _ 1,86 496 3,92 j
Vawn  Jrgot, Mbmt, GRET, YAET (2.9)

Comparing (2.8) and (2.9), we obtaln the inequality

8T, > 39z
“ A"(‘t) JAE& iﬁ...



or, after squaring both sides, multiplying by‘AiQﬁ and rounding
to 3.92 = 4,

8 T} 516 {
At} .| (2.10)

It can be seen from formula (3.30) that for large =z = Atgy,

(2.10) can be transformed as follows
. .B‘ T l \
E-f?r IGXﬁE

or dmt, (82, 6 et
m ‘ (.\ >A{!*f£)= mr

o () l

(2.11)

Thus, for Aty = 29 and AA/A=0.1, m » 20 c¢cycles are requlred.
Hence, the determination of. time varying fluxes is a difficult
problem. To improve its solutlon we must selectcbetter methods
for estimating the density which will be discussed below.

Method of Successive Approximations

One-can attempt to lmprove the accuracy of the estdmates
obtained above by considering them as first approximationiesti-
mates, denoted respectively by_&il). For each interval At
between two nelghboring instants including two or more intervals

toi, We wrilte

A't-bt,+dt;+&t3+a't4 (2-11) [SiC]



where At; is the part of At referring to ty4 (i.e. the active

range of the i-th fllter). Next, we partition
) [
B, = pLEL
ZaM (2.12)

and form the next approximation

0 8K-0+8L0K:  BK-DegTax, |
A i =R b L..
I Ay (2.13)

&+ i'The accuracy can be further improved by replacing in (2412)
Aél) by Aﬁz), ete. The accuracy of this method can be estimated
from trial fluxes.

Section 3. General Discussion of the FProblem

Suppose that the counter begins to operate at the time t = Q.
In the general case, it records some tite varylng-Poisson flux
of pulses characterized by a piecewlse continuous density function
A(t), with A(t) = Ai(t) for the i-th connected filter. When each
flux is simple, 2(t) will be a step function with period 4t,.
Below, we will use the notation ‘

.
2= ot | (3.1)

In particular, in the case of simpdest fluxes, at the left
endpoint of the interval tgq preceded by m full cycles,

eutti=n it ot | (3.2)

In the general case [1], the probabllity that exactly k pulses /9
will appear in time t 1s



o= L J (3.3)

Let us denote by pu (w = 0,1,..2,7) the probability of the
event that the number of pulses can be represented in the form

K=o | (3.4)

Then we have the following formula:

s Beds py B
A i [2(6)] (3.5)

d-0 (Budsu)T ™~

Below, we omit the argument t in z, and,.conversely, consider

p,, as a function of z, i.e. pu(z). z 1s assumed to be a complex

U
variable. Then, the functions ezpu(z) = uy(z) have the followlng
properties:
d*i.2)
L TgRE T (3.6)
‘d"u,..(o) {1 for kemM;
-——Fz . =3 o for ﬁlo,-n-rff"lﬁ.""'?' (3.7)

From equations (3.6) with initial conditions (3.7) we obtain
expliclt expressions for the uu(z)

[ ' ué. . ota = = 'F'-
Uata) - 5o+ vt ]=§5(M”- wae ¥, 8
Le(2) = 4 Ute) -'-[e'+ m""emz,...,m?fa-mem'.aj (3-8)
HMAVES (l_}s.f‘ 8 (3.9)

Some properties of the functlons uﬁ(z) are discussed in [2,3].
We will prove the following lemma.

Lemma I. Let z be real and z + «, Then

Cim &JZ)G%- (3.10)

FE -
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Progf, (3.9) implies

- . . R AT
Ppu(i- 4 | = g Jo e e v ™0
e fliz]

Lo its L, z i, L &R
< § 2|l e p 3 [eOTR] - g e
!

-t

w
o

(3.11)

~

T Refhy -z
,3_;.3

i
F;' 16("-0.5'-1.1 ;)z(

T

~ K

2
)

b

l

7 < %ze"('"{l—i)é , . ‘
which proves the lemma.
Using estimator (4.1), we obtain, for example, the result
that the equality;pu(z) = 1/8 is valld starting with z = 23 with a
relative error smaller than 1%. It can be seen from Table I that
the relative error does not exceed 1% for all practical purposes

already at z = 18. Thus (4.1) is a sufficlently good estimator.

We note that lemma 1 can also be derived from the general
results for Markov processes; however, the estlmator for the
accuracy 1s not as good as (4.1).

Let us return to formula (3.2). We have
Pu = Pu fin_-d{}). (3.12)
We will conslider the interval t,y.

The probability that exactly k instants will 1ile in the inter-
val tpi can be expressed as follows:

for k = 0 P = 3 3 _‘\itafkito)}
& g_:op,‘%c —J';— H
(3.13)
- 4 3 . i 8(»’.—1]."',[.(“
for k > 0 P*’-:Pﬁzc Mo _("_tl__”_i_ )
° e . [3(5-0*308-‘;\],
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TABLE 1. p, (2)
;?\:i 0 I 2 3 4 5 6 ? ' I
0.1 | 0.90484 | 0,09048 | 0.00452 |.0.00015 0 0 0 0 ]
0.2 | 0.81873 [ 0.16375 | 0.01637 | 0,00109 ( 0,00005 0 0 0
] 0.3 | 0.74002 [ 0.22225 [ 0.03334 | 0,00333 | 0,00025 | 0,00002 0 0
0.4 1 0.67032 | 0,26815 | 0,05363 | 0,3715 | 0.00072 | 0, 0000¢ 0 0
0.5 | 0.60653 [ 0,30827 10,07582 | 0.0126% | 0.00158 |0.00016 | 0. 00007 0
0.6 | 0.54881 1 0.32929 |0,09879 | 0.01976 | 0,00296 |0.00¢36 | 00000 0
0.7 ] 0.43659 | 0, 34761 | 0.12166 | 0.02839 | 0,00497 {0.00070 | 0.00008 | 0,0000I
0.8 10.84953 | 0.35946 0,14379 | 0.03836 | 0,00767 | 4.00123 | 0.00016 |0.00002
03 [ 0.40657 1 0.36591 |u.Tsuc6 | 0.04940 | 0.0171T | 0,00200 | 0.60030 | 0.c0004
1.0 1 0.36789 [0.38788 | 0.18394 | 0.06131 | 0.01533 | 0.00307 | 0.00051 |o.00007
1.2 10.30125 1 0.36144 [0,21686 { 0.08674 | 0,02602 { 0.00625 0.00125 |0,00021
[ T# | 0.28669 | 0,34525 |0.24167 | 0, 17278 0.03947 | 0.0I105 | £,00258 |0,00052
L€ ] 0.20211 | 0,32307 10.25243 | 0,13783 | 0,05513 | 0.0I%64 | 000470 | 000108
I.8 | 0.1657% | 0,29763 |0,26780 | 0,16067 | 0,07230 | 0.02603 | 0,00781 | 0. 00201
1 20 [0.13619 f0,27085 |0,27071 | 0, 18045 0.09722 | 0,05679 | 0.01205 {0.00344 N
5.0 | 0.05783| 0.15206 | 022465 0,22426 | 0.1A809 | 0,10083 |0,05041 { 0,02760
4,0} 0.048091 0.08549 [ 0. 15182 |0.19729 [0,19501 | 0,15649 |0, 0425 0.05956
>:0 1 0.07207} 0.06397 | 0,10236 10,1362 | 0.17890 | 0. 17679 0,14669 | 0,10460
5.0 | 0.10507) 0,08383 1 0,085% |0,11178 | 0,14512 | 0.1¢552 0,16285 | 0, 13857
70 [ 0132741 0.10838 | 0.09356 10,09739 | 0,117%1 | 0, 14792 |0, 15670 015231
8.0 | 0.14054] 032889 | 0. 11994 Jo. 10121 010554 | 0.12128 |0,13908 | 0, 14862
[?-0 | 0l4z82 10.17%6 10.12647 0,11539 |0.10712 | 0,11137 |0 12358 0, 13659
10.010.13821 0.13836 | 0,12.48 [0.12564 | 0.11555 | 0, 11163 |0, 17554 0.12497
1070125761 0.15256 | 0. 13094 0,13150 [0, 12404 | 0. 11743 |0 11506 0,11851
12.010.12081 | 0.12614 [0,13100 [0.15235 |0,12939 | 0,12386 |0.11899 0,11765
13.010:11%6u 0.12208 10,12628 [0.12972 |0.13040 | 0, 1279 0,12372 | 0,12028
14.010.121521 0.12106 10,1251 {0.12627 |0, T2868 | 0,1289 | 0, 12689 0.12373
~>010.123821 0,12215 Yo, 12214 {0,12381 [0,12¢17 | 0. 12785 | 0. 12786 0,12619
16,01 0.12572| 0.1239% |0.12281 [0 12294 |0.12628 | 0. 1350 0.1271% | ©, 12705
%y 910126671 0.12541 | e.12411 | 0.12333 [0,12353 o, 12459 |0, 72589 |0 12667
18,01 0-12627 | 0.12604 | 0,12521 | 0.12425 | 0,12373 0,12396 |0, 12479 0,12575
19,0 0.125521 0,12595 0,12573 | 0,12508 | 0,12438 |0, 12405 |0, 12427 Or2s92
20,01 012500 10,12550 0.12571 [ 0,12551 | 0,12500 |0.12450 |0, T2429 0,12449
fso,o 0,12497| 012500 0,12503 | 0 12504 {0,125 [0,12500 |0 12497 0,12496

~
[
o

“~
—~
(8]

' ﬁ




These formulas are exact when we use the expressions for
pﬁ derived above, and in the case of time varying fluxes replace
Ayto by

o
fatdt, ‘l

Using (3.13), we can write down an exact formula for the
expected number Mg of instant k in the interval t,.

& LS, ity ek
Mi = SR ko] 2o 2t 2 K Teco T (3.14)
We introduce the notation
mﬂrzﬁ-:émﬂ;e'f ‘ij::;} (Heot,.3) . (3.15)
The.identlty
Fpl) - §P~—r‘i;‘*(‘-§}m¥.)-’ (3.16)

1ls easily verifiéds

For w = 0, in this identity we replace y - 1 by 7. Using
(3.16) and Table 1, we can calculate mu(z) for a set of values
of =z.

For u =8+ v (v =0,1,...,7), we obtain

?1!‘ -2 i?rv,u ’
S (3.17)

Kmo mi =m’.{z)“puflj-

!

11



Now, formula (3.14) can be written in the following form:

o

=2:P{ZZn%qﬁﬂ>t)-+EZLW@ﬁﬁmt) %ﬂﬁkhﬂ} j (3.18)

When | = 0, the formula does not include the first sum in the

braces.

M, can always be calculated from formula (3.18) involving

a finite number of terms. The expression pﬂ coutslde the braces

depends on the argument in (3.2).

Underxthe sconditdonsiofiilemma I, 1l.e., when we can set

P, = 1/8, the followlng holds
Lemma 2.
Sim My =2ite
P‘q-‘ﬂ' 8
(3.19)
Proof. Forrcompactness, we write Ajt, = z.
3 A= %
%o.;. {%m“d_m(ﬁ +§“[m9‘,ﬂ (z}-rqd-,‘r{z,)_[} n\
(3.20)

Py
Glicefio T (BBuy jRojup . e

a3 M-t : smh‘;ﬂ 3 3 1.:-.‘,11 E?FQ-J-“H
' ‘\ -IZ.{Z Z (‘“") * ZZ [ (akr a).)l - {i’x«)-,-’.)!] le Z A

Let us find the expression for A% in (3.20). Let yx = 8k + x71:

AR S 52 1

LAy = L LI [“W {0+ K, (m)
} T e i (Rl Hwa g “"' J«Z TR J
H . ‘I

12

™~
=
(@A)

|



where ¥, (y) and Y,(H) are the number of terms in the inner sums
satisfying the conditions at ﬁ, J and X;. For example, we have
¥1(0) = 0 (first sum vanlshes), y¢,(o) = 1 for any x1 (thenuwe
take"j = X1, which 1s always possible since 0 < x; < 7). For
u > 0, wl(ﬁ) = 1 when we can take j = x1 + ﬁ ~ 8, obtaining

6 < < u - 1, 1i.e. when ﬂ > 8 - x1- This implies Ew(u) = Xq-
Next $,(nu) = 1 1f J =u+ x7 < 7 exists, 1.e. n <7 - “x1. Hence
Ewg(u) =8 - x3. Thus, for x > 1,

Ax o CEeX re(-¥) B X i i

1
(Rrax, 1t CBeeXoM — (ameki-n! (X-1)}
i

and for x = 0, i.e. xy = 0 and k = 0, AX = 0.

Now (3.20) gives

which proves the statement of the lemma.

Similarly, as in the derlvation of lemma 24 we ebtain for the

vartance Dk as p; > 1/8 the-expression ~ . ___ .

3!’9\3

o~ F
Dk wge-z 2 F (Bufezgya v).._._.____, (M‘:z
AT

Kmo Weo (fwcev)! (3-21)
which can be expressed 1n a different form.
We 1ntroduce the notatlon
d (E)nf:firﬁfe'z F-iica
Gyt * {ﬁ_-ro,.t.,.,_,.;) (3.22)
Similarly as in (3.16) we obtain
c{ () = -—m’h,rzn{a-%)mﬂ(;) ‘[ '(3_23)

i3

~~



Now we can write Dy + (M)? in the form:

. 3
_‘DK*(MK)L:; L 8&,(3)-(16-.2.,:)@,(31¢(3.-.-) (23 ]=
el P

N (3.24)
= ’l?, ;: [IZP,,.J(EHEP,._'(‘!H vle ¥pu(z)]:

We note that for v < 2, p,_, must be replaced by p,44- Taking
into consideration that My = z/8 and I py(z) = 1, we finally
obtain v=0

Lemma 3

[
fim DK = -[ +g.;v(s-ﬂﬁ,(n}; £zt

Eﬁ"’" ta .

(3.25)

For small z,.the value of Dy can be calculated with the
aid of Table 1. For z < 20, the values of 64Dy are given in
Table 2. For z » 20, we can use with sufficient accuracy

py,{z) = 1/8. We then have

Ne =gn (Ait.rios) (3.26)

Finally, let us estimate the density coefflcient 21 which was
mentioned above. We drop the subscript i. Then we have the

following. exact formula

+ * 1 “ta w1
_ -).‘i.(:\(’—) w7 ‘-“(:\X)
Me = 1uchP"J£ - x:"_!_e Tyt wﬂhx}k‘“
(-]

(3.27)

‘where ¢m>_2364"t”‘ Aty txy)®

Bt

The interpretation of the formula is the successive summing
(integration) of arbitrary values £ with the conditions:

14

~



TABLE 2

[:} Me &40, 3 Me
i Y 0 22 | 0.59093
| I Jo.00000| 6,997 2 | 0,62501
2 }0.00003 | 1I.617 26 | 0.65385
3 | 0.00050 | I15.084 28 | 0.67857
4 10,0037 | 16,538 - 30 | 0,70000
5 |0.01080 | Is,954 40 [ 0,77500
6 |o0,02688 | 17,025 50 | 0.82000
7 {0.05257 | 17, o1 €0 | 0.85000
8 |0,08865 | 17.969 70 | 0.87I43
9 }0.13176 | I9.ui3 80 | 0.88750
| 10 {0,17932 | 20.243 9 | 0.900.0
I1 | 0,22843 | 21.479 100 | 0,91.00
12 |o,27677 | 22,620
I3 10,32273 | 23 eua
4 |0,36542 | 24, 600
I5 fo0.407 | 25,532
I6 {0,43987 | 26,480
17 |0,47182 | 27 660
18 [0.500.3 | 28,465
19 1052664 | 29 4g2
20 |0,55016 | 30,500

a) 7 -~ a points of the flux precede the first instant

In the interval tou(the probability of this event is pa).
b) The first 1lnstant coincides with the instant t.
¢) The sum.of the lengths of the "steps" is x.

d) The number of instants is k + 1 (k "steps").

e)
after the "steps."

There are B remaining points in the interval t,



The integral in the square brackets l1s transformed to the
form

—Afto-t} o=
=

A

by [\’H

ty- Huer -
(AXY M"Eg 5 ._ 5 Pafey
j( . £ ij © dom Aft. t;;EK;- ST D) R
se 2 dde- ~ A kw o [Ba+ Bed )1A

Substituting in (3.27) and integrating,,we obtaln

wk, 3 aa Brapoboot
e ¢
Me =

o s
S ML L
Atq f;o"“ ‘E’a %Tn (Brefprg-a) !

(3.28)

We let Aty = z, assume p, + 1/8 and write

P o o . x
Pulaye 5 &2 2
ro

«!

for the Polsson distribution. Then, transforming the serles (3.28)
analogously as in the derlvatlon of lemma 2, we obtain

Lemma 4

cim MP —(I——-)ﬁ q:,(;)),_ z*

P"’—B- o]

(3.29)

Table 2 glves the values of the right member in (3.29) for
some z. It can be seen from Table 2 that starting with z = 15,

=43
ME=t-3 (3.30)

wilth an accuracy up to 1%.
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Section 4.  Second Approximatlon Method

We will consider the base interval T, = Imgty. When the left o
endpoint of this interval is sufficiently far from thé polint at
which the. counter begins to work, the expected numbér of in-
stants included in the intervals in which the i-th filter operatés

is, according to lemma 2,

1
.8-‘ Aimoto -

Suppose that the actual number of instants is nj. Then

M Bag

C= (4.1)

can be taken as the first apprqximation. The accuracy can be
further improved along the lines described in Section 2. This
method of successive approximations can also be applied

to low density fluxes. The accuracy of the method can be
estimated on the basls of experimental trial:.problems.

For sufflciently dense fluxes, when both first approximation
methods can be applied, thelr accuracy can be compared theo-
retically. In fact, taking into account (3.26), the varlance
for (4.1) is

: /20
= Moy g o 64 At,+10,5 F ey
DJ. 64 (Alt. 'o'sj(mot)" = -__r;l_g?e'_.__.__,{ (LI. . 2)
Transforming (2.4), we have for the first method
D = 8l -1) .
(F,atw) (4.3)

Expression (4.3) is not convenlent for a comparison, since it

17



involves only random variables. However, passing to expected

values, we can write

K- 1 -
Shati = 8(? 2
i.e. " ‘
3 - X :
D' =- A'I. = Ai - _' Ai-to
8{x-n): ‘i_: sty motie;’ (_’-l "4)

Using formula {(3.29) for MR, we obtain

E . e
D= m.tt.[(-- g Yi-ate) + ggz 2 ] (4.5)

Two conclusions follow from the above. First, for small =z,
Dq 1lncreases engrmously, which was to be expected. In fact,

expanding M2 in a serles in powers of z we obtain

2% 92"
Mf"m--{-ﬁ+.." »

(4.6)

(4.7)

as z =+ 0.

For a sufficiently high density, we can use formula (3.30)

for which we obtain

D = mdfﬁ—%}'\ (4.8)

The comparison with (4.2) gives

18



~
1Y)
=

:

D: 4 85y, B
> = %)J (4.9)

l1.6., D»/D] + 1 as z + o, (5.0)

Thus, for high densitiles, the first method may be more

efficlient, since

—.(f,,%s)(._-:&),mg—?;é:_ , (5.1)

which 1s greater than 1 starting with z = 63. However, this
advantage 1s very small and 1t approaches zero as z approaches
infinity. - D3/Dy attains its largest value, 1.006, at z = 126,

We note that using formula: (4.5) for Dy and formula (3.25)
for D, (instead of (3.26)), we can calculate more accurately the
values of Dp/D; for a set of values of z on the basls of
Tables 1 and 2.

The corresponding values arergiven 1n Table 3.

Section 5. Method of Least Squares

The method of least squares enables us to treat the base
Interval without using lemmas 1 and 2. The successlve intervals
between the instants included in the base interval whose length
is llmotO are taken as the base. Suppose that altogéther [7]
instants are included in the interval, i.e. [?] intervals.

Let J denote the number of the interval. For a fixed j-th inter-
val, each i-th filter operates on 1t during njy (ng; = 0,1,...)
time intervals Atjyj (v = 1,...,nj1). Thus, the expected number
of pulses 1n the j-th interval is

N (5.1)(Fsie]

19



TABLE 3 /22
D
: 50
4 0,013
5 £.037
6 0.076
7 0.131
8 0,1.9
9 0,278
10 0,362
11 3,546
12 0.522
13 0.587
T4 0,642
15 0.688
16 0.728
17 0,768
18 0,791
¢ | 0,817
20 0,659
%0 0,945

where the inner sum 1s zero when nj; = 0. We note that the vari- /2
ance of the number of pulses mentioned is also gliven by
expression (5.1); i.e.:

?':M [
DY =M. (5.2)

Since in fact & 8, formally applying the method of least

squares, we obtain

I (5.3)
r(?c)=f;3, *—‘—"‘ng “mm-\ , B

20



for estimating the A ={(A1,...,A4). The resulting problem is
nonlinear. However, taking Into account (5.2) and the fact that
Mlj = Ly = 8, we note that the variances D&y are approximately
equal. Hence, they can be omltted and the problem takes on the

form:
Fra)e 3 (£ Pat ) = mi
()= 2 (N oty - g) = min. (5.4)
From the above, we obtain in the usual manner for the Ay .

the system of equations
g
A = AL, (%, &) ‘ (5.5)

where

N oA
Aox =82 Zé‘tuva‘ P

. d:l’ a3

e

N i e -
A =Z’(iat"} ..ﬁ-'&tgv‘i)' (5.6)

Jxl v=1

We note that when this method is used, any interwal, which
is arbitrarily close to the point at which the counter begins
to operate can be used as the base interval. However, it is
assumed that the fluxes are -'simple 1in . the ' base '

interval.

It can be seen from the results obtained on the basis of the
method of least squares presented below in Section 6 that this
method gives estimators with satisfactory variances but with
considerable blas. To clarify the reason for this phenomenon, we
Wwill consider the estimation of the parameter A of a single flux.
Instead of (5.4), we obtailn

21



.
(3%}
'_I

F'f)\}-' U\at Sjwrmq (5.7) =
i.e. for the estimatorlx we have
T L)
}% atpt ﬁd'ratf (5.8)

As N + » the numerator and denominator converge in the probability
sense to the corresponding expected values and we obtaln

gim?:%\ {(5.9)

N-p

i.e., in the 1limit the bias in the estimate is half the estimated
parameter. It can be seen from the table that the bias Increases

as N increases.

However, 1if we use

" .
( }s'}?:.‘. .-l‘f,J -8 N)L": Mipa g\

(5.10)
for the estimation instead of (5.7), we obtain
- 8
A= - - A
qLey (5.11)

i.e. , an unbiased estimator. Thls leads to the ldea of improving
the accuracy of the least squares method.by summing in (5.4)
terms.withithe same structure. Let us conslider the j-th inter-
val ATJ. It is broken up into intervals with different filter

numbers 1 as follows:

ATy = Aty v oty o rabipn e 8 e 1 (5.12)
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We note that all terms in the sum (5.12) are equal to ty except
the first and last term. We will assume that the structure of
ATj is determined by a pailr of numbers s =‘(i15n§), where nj

is the total number of terms in the partition (5.12).

"~
N
W

‘:

Let Ng denote the total number of Intervals AT; with struc-
ture s, and Qg the set J corresponding to the glven s. Then

N o= N s N ond e N e N e "”-,;+-----J (5.13)

Now, instead of (5.3), we introduce the followlng sum of squares

n

Lo &
Tkt A - k (5.14)

' Py - >;- ﬁ‘(i‘{?;
The factors 1/Ng in front of the brackets were introduced to take
into account the variances.

Because of the considerable difficulties connected with the
minimization of (5.14), the problem can be solved approximately by
summing only over certain structures s. The case when the sum
includes only structures of the form s = (i,1) will be called
the first appreoximation. It can be easily verified that this
appreximation coincides with the first approximation method
described above. In the second approximation, structures of the
from s = (i,2) are also included in the sum.. For this case,
(5.14) reduces to the form

N

Rlr) = S, (A2t e,

4 N g

3 s M )
. ad y !

(5.15)

(for 1 = 4 we take 1 + 1 = 1),
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In formula (5.15), one prime in the At indicates that the
interval At lies at the left endpolnt of the correspondingiinter-
val t,,and two primes indicate that it lies at the right endpoint.

The followling notatlon is convenlent:

/26
Ny .
2oatin = Sa L
. (Y] )
LI I ] %i.a N . (5 - 16 )
g: T v ™ Sium 2 &, Cbar,vn, T ey, j
N

In more general form s1j will denote the sum of the Aty,, overall
intervals toi in:the base and thelr subintervals At in the inter-
vals between nelghboring instants, with one endpoint in tg3 and
the other endpolnt in toj: Then formula (5.15) can be rewritten
as follows: '

] Do .,
CPL(A) = :Z-:I{Fi-,l (Ai Sid —SK"') h ‘;{i_i'l()‘isi.inelausiu,l ‘3-\’.‘,2)2}.

(5.17)

We again-.obtaln the system of equations (5.5) for the A, but
instead of (5.6), the expressions for the coefficients are:

AoK L E(Sn,t-. + Sp—:g + Sr, zu) M

. ” .. LN
PIRRET AT S Y o
N MNiz  Niaz

5. S, ( 5 - 18 )
Ai.._in."' -,::;.. Lm,. ; Ai.i-. - S;:‘-i;-r.i_

For the more general case, the formulas become more cumber-
scme. The terms

] . - .
ii.’(hs.'."..z_-rlm S‘g’" -{—kic‘; S«zri "3”’;'5)’.-"--. ( 5 . 19 )

must be added inside the braces in (5.17). In the above

s.
i+l
the formulas, since for 1 > 4, it is replaced by the residual

= Nygty, ete. Here, difficulties arise even in writing down
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module foumw. Thus, for example, the expression si+p 3 in (5.19)
kedomes S5, 3 =_sl’3‘for i = 3, and it is not clear whether the
left or right endpolnts of the intervals tgi are meant. There-
fore, primes must be used as in formula (5,15), We note that
such an amblguity does not arise in (5.17), since, for example,
for i = 4

Sitl,1 T S5,4 % S3,4-

This c¢an have only one meaning, namely, the right endpoint lies /27
at tgyq and the left endpolnt at tgyy, since, if the converse were
true, we would obtain s = (1,4) 1nstead of the structure s = (i,2).
rou ‘
The results obtalned from solvlng the problem 1n the second
approximation by the method of least squares are presented in
Section 6.

Section 6. Modeling of Trial Fluxes and Calclulation of Statistieal
Characteristics of Different Methods

Each flux i1s modeled as follows: From time t = 0, the
intervals between the pulses (which have an exponential distri-
bution with parameter Ai) are laid off on the axis, 1.e. uniform-
ly distributed random numbers £, on the interval (0,1) are selected

and

nf‘--ihengx-g,yl
- {(6.1)

is used. When:a model ofeat;me'vérying flux is required

I YEWTTS (6.2)

the value corresponding to
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'tn--")_‘,dtd' (6-3)
is substituted in (6.1) for Ai.

Next, the time axls is partitioned into subintervals of
length t,, in which the instants are entered as follows: When
8k + vy points 1lie in the first interval, the polnts whose
numbers are multiples of eight are taken as the Instants and the
number vi 1is stored in memory. Next, we consider the second
interval of length ty. If 1t includes 8kp + vo points from
the second flux, for 8k, + vo > 8 - v, the point with the number

8 - v1 1s taken as the instant, ete. When 8kp + vp < 8 - vy (i.e.

kp = 0, vi + vp < 8), no instant lles in the interval under
consideration and the number vy + vy is stored in memory, etc.

Thus a sequence of instants is generated which simulates
the sequence transmitted by the physical counter. Each instant
is characterized by 1ts own time tj (j = 1,...,n). In the study
of the simplest fluxes, we used n = 1000. The trial fluxes were
modeled for the following variants of the densities Aq4:

F’g&" x, A A b A

0.267 0.200 0,500 0.133
0.800 0.600 1,500 0. 400
2.400 1.800 4,500 1,200

|
|
i
1

== = G ]

N (N = 50) realizations of the fluxes were calculated for
each variant. From these, the same base intervals were selected
for each variant: a) fromt = 0 to £ = dmgty = 4 min (my, = 5,
to = 12 sec); b) from t = 4 min to ¢ = 8 min; and c¢) from t =
= 4 min to t = 20 min. Variant b)is the basic variant. Variant
a) was used to illustrate the effect of the transient regime and
variant c¢) to illustrate the effect of the length of the base.
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The values‘K&y),‘kév),‘hgyl,‘h&v) (v denotes the number of
the realization)} and the first and second sample moments

- N

Moo= 2 (6.4)

P® é(h’a’.’-i.-,)(u’:;‘_x,,). (6.5)

were calculated for a particular estimation method and the
Selected variants.

In addition the second sample moments about the true values

A5 were calculated

ﬂl.lz = 1’44,1‘, "'(il.-lhnk—u-)u) . (6 - 6 )

The following principle- was used to reduce the total number
of variants. First, the methods were compared on the basis of
varlant II. Next, some variants were calculated, using particular
methods to 1llustrate the theoretical results discussed above,
and to clarify relations not amenable to a theoretical study.

The results of the calculations are presented in Tables 4-7.
The following conclusions can be drawn on the basis of the tables:

1. The sample correlation coefficilents are negligibly small
(Table 7). Therefore, the remalning tables give only the

variances.

2. Table & shows the effect of the transient regime. For
variant Ia, for A; the error in Ay 1s 30%; however, for IIb, the
error already decreases consliderably. Moreover, for Ia, for
i = 4 the error 1s already negligible.

3. Table 5 shows that for X3 (z = Aty = 54), the accuracy of
the first approximation using the first method 1s roughly
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TABLE 4, VALUES OF Ay, bii AND jijj3 FOR VARIANT IIb

‘Methog [Param-{ T T
eter T
| T
" Initial
value », | 0.8 0.6 1.5 0.4
First =
rl'fﬂé)‘éﬁgd, % |0.930 | 0.5 1700 | 0.072
irst -
|approxi- | 0.29243 | 0.42213 0,06732 | 0.0601g
natlon | S |0,80082 1 0 42278 0.09750 | 0.I67%
methoa, | % |0.885 | 0.43 1788 | 0,106
Spooaai- | #u | a21v36 | 0.15448 0.08073 | 0,0404I
mation . |o.22480 ) 0.18209 . | 0.765¢5]| 0.12597]
§$€ﬁ§§, | % o | o.e4s 1507 | 0.408
approxi- | A+ |0.02657 | 0.07946 | 0,05551| 0.0837I
mation Fi. 10.02702 | 0.02181 0.053% | 0.03378
Second - T - -
ISTlEth . )«g 0.770 O.BSI . I.s;g 0.400
econ = - :

Seocoxi- | fu |0.0940 | 0.01158 0.03858 | 0.0261I
mation e ]0.01995 | 0.0I255 0.03894 | 0,02520
Method % tozsa ! oo,559 1.395 | 0.350
of least
| squares | Fi; |0,0I8I0 | 0.60774 0.02617 | 0.01657

- | M |0.022¢3| 0.00940 - { 0.087I9 | 0.0IS02
More.ac- | 3, io.928 | 0.5%0 1587 | 0.345
%§§§§gs . |0.02703 | 0.c3206 | 0.03984 | 0,05354
T ¢ ,
Second | i |0.0434I| 0.03544 0.04743 | 0,08655
approxi- i
mation -

iy

comparable to the accuracy of the first approximation using the
second method, which confirms the theoretical results. The

second method becomes more efficient for smaller A. However, when
the second approximation is taken into account (this case was

not studied theoretically), the applicability of the first method
can be extended to smaller values of A, Thus, for example, for

A =1,2, in the first approximation, the variances for both
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TABLE 5, VALUES OF Aj, Hyy AND Hij FOR VARIANT IITb
! :

i lParam—; . ]
!‘MEthOd leter l 1 > - 3 2
vaisidt  |'h f2.400 | I.s00 | 4.500 | 1,200
IFirst - .
m%thgd, A 2.488 . 1.839 | 4.630 I.445
s -

approxi- .- | Mu ]0.07212 | 0.06927| 0.0629I| ©.06223
mation Hi [0.07994 | 0.08868| 0.08213{ 0.02208
Fi < :

methed, X |22 | 1.780 | 4,507 | I.2¢6
.:S‘?gggi_. - BAu |0.04247 | 0.0449I 0.05895| 0.02I71
-mation ‘#i - [0,04590 | 6.04531| 0.05400| 0,02383
%ggggg %. {2.389 | I7e8 | 4.581 | .17 .
“approximas | A« [0-08535 | 0.05249] 0.066%8 |- 0.03391
rtion . M [0.05547 | 0.0535I| 0.08742 | 0.03449
pechnd, | % |ess | 1,79 |4.5%0 | IIgs
BBE2RRi- | M [0.04680 | 0.0446:) 0,05573 | 0.02302
;mation i 10.04744 | 0,04578] 0.05664 | 0.02304 ]
gothed of 1l N |ar0 | T.eea | 4.0 [ 1.083
.squares Fa [0.08508 | ¢,03018| 0,0884a | (.02541
S ~ #a 10.07490 | 0.05866) 0.306I2 ! 0.03987
‘Mo - 1.3

rate lesse | M 2.8 | 1785 4518 | 117

- «sqggggs g Mi: {0.05175-] 0.04988| 0.05696 | 0.02I85

me - .
second . 1 HMu |0.055I4 | 0.05404} 0,057%. | 0.02712
(, approxi- B
mation

methods differ considerably, but are nearly equal in the second
‘appreximation.

‘For still smaller A (Table 4), the second method becomes
more efficient in every respect -- even in the secondd approximatiocn.

4, The method of least squares glves a blased estimate.

For small A, the improved least squares method in the second
approximation is much worse than the second method in the second
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TABLE 6. VALUES OF X1, n4i, Rii FOR VARIANTS Ia, Ib, Ic
(SECOND METHOD, FIRST AND SECOND APPROXIMATION)

Va- | ‘. | Pardm- Y e
i’i- 'i Method eter i A
]Emt I; 0.2701 2; 0.20013; 0.50¢!4: 0,130
First | 5. - -
approxi- A 0,184 0.173 0.523 |0.I3F
mation i 0.0I343 | 0.0I440 | 0.02122}{0.0T244
1.a)_] il 0.02083 | 0.0T51T ! 0.021730,01244
iﬁgiﬁiw A 0.201 |0.I88 | 0.542 |0.137
mation His 0,01447 |0,0I6I4 { 0.0I98%)0.01362
_ Fii | 0.0I924 |0.0I628 { 0.02186 [0.01367
First -§ % | 0.275 0.200 {'0.530 [0.133
approxi- -
mation Hu | 0.02518 |0.02748 | 0.02I30|0.0I991
M | c,02520 10.02I51 {0,02280 [0.01592
1 B) -
Second % o , .
approxi- R 0.I85 |0.543 [0.137
mation . M. | 0.02454 |0.02230 | 0.07706 |C,02006
My | 0.02460 }0.02232 | 0.02I95 [0,02011
First - ‘
approxi- M| 0.269 .190 0.503 10,132
mation Fe | 0.004I3 |0.00360 |90.00437 |0.00217
I o) Mg | 0.004I3 |0.00370 | 0.00438 I0,00216
| |Second | o200 Jo.zer  [o0.504 oSS
SPproxi=l  A. | c.ooao |0.00343 |0.00422 |6.00210
Fi | 0.00400 |0.00351 | 0,00423 [0.0027T
. [}

approximation. For larger A, these methods are practically

conmparable.

5. Taking into consideration the entire discussion and also /30

the simplicity of the program, the second method in the second
approximation is recommended for practical use.
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TABLE 7. VALUES'OF ¥j; FOR VARIANTS Ia, IIp, IIIc
(SECOND METHOD, SECOND APPROXIMATION)

l Var_iant r-i\‘j I 2 3 4
I | oors | 028  -0.21 0.5
2 | -0,00500 0.01628 | -0.30 . 40,09
Ie) 3 |-0,00431  -0.0083  0.02I66 | -0.33
4 | -0,00502 0.0i35 . -0.00573  0.0I367
1 { 00195 | -024  -0.16 -0,
2 | -0,00375 0,01256 | -0,21 40,11
I s, 3 |-0.00438  -0,00468 = 0,03834 | -0,23
4 | -0.008¢3 0,00206 -0,00736  0.(2620
: | ooosee | -oax 0.22 . -0,08
2 |-0.001¢1 0,00868 | 0.14 v
0e) 3 | 0.00238 0.00I49  0.0I206 | -0.75
| 4 [-0.0033 000005 -0.00I12  0,00447

Note: The corresponding sample correlation coefficlents
are.given above the diagonal.
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